f07 — Linear Equations (LAPACK) f07pre

NAG C Library Function Document

nag_zhptrf (f07prc)

1 Purpose

nag_zhptrf (f07prc) computes the Bunch—Kaufman factorization of a complex Hermitian indefinite matrix,
using packed storage.

2 Specification

void nag_zhptrf (Nag_OrderType order, Nag_UploType uplo, Integer n, Complex apl],
Integer ipiv[], NagError *fail)

3 Description

nag_zhptrf (f07prc) factorizes a complex Hermitian matrix A, using the Bunch—Kaufman diagonal pivoting
method and packed storage. A is factorized as either A = PUDUPT if uplo = Nag_Upper, or
A = PLDL"P" if uplo = Nag_Lower, where P is a permutation matrix, U (or L) is a unit upper (or
lower) triangular matrix and D is an Hermitian block diagonal matrix with 1 by 1 and 2 by 2 diagonal
blocks; U (or L) has 2 by 2 unit diagonal blocks corresponding to the 2 by 2 blocks of D. Row and
column interchanges are performed to ensure numerical stability while keeping the matrix Hermitian.

This method is suitable for Hermitian matrices which are not known to be positive-definite. If A is in fact
positive-definite, no interchanges are performed and no 2 by 2 blocks occur in D.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_ RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: uplo — Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored and how A is
factorized, as follows:

if uplo = Nag_Upper, then the upper triangular part of A is stored and A is factorized as
PUDU" P where U is upper triangular;

if uplo = Nag_Lower, then the lower triangular part of A is stored and A is factorized as
PLDL"PT where L is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

[NP3645/7] f07pre.1

f07pre NAG C Library Manual

4: ap[dim] — Complex Input/Output
Note: the dimension, dim, of the array ap must be at least max(1,n x (n+1)/2).
On entry: the Hermitian indefinite matrix A, packed by rows or columns. The storage of elements
a;; depends on the order and uplo parameters as follows:
if order = Nag_ColMajor and uplo = Nag_Upper,
a;; is stored in ap[(j — 1) x j/2 +i — 1], for i < j;
if order = Nag_ColMajor and uplo = Nag_Lower,
a;; is stored in ap[(2n — j) x (j —1)/2 41 — 1], for i > j;
if order = Nag_RowMajor and uplo = Nag_Upper,
a;; is stored in ap[(2n —4) x (i —1)/2 4 j — 1], for i < j;
if order = Nag_RowMajor and uplo = Nag_Lower,
a;; is stored in ap[(i — 1) x i/2 4 j — 1], for i > j.
On exit: A is overwritten by details of the block diagonal matrix D and the multipliers used to
obtain the factor U or L as specified by uplo.
5: ipiv[dim| — Integer Output
Note: the dimension, dim, of the array ipiv must be at least max(1,n).
On exit: details of the interchanges and the block structure of D.
More precisely, if ipiv[i — 1] =k > 0, d;; is a 1 by 1 pivot block and the ith row and column of A
were interchanged with the kth row and column.
If uplo = Nag_Upper and ipiv[i — 2] = ipiv[i — 1] = =1 < 0, <dzl_1’i_1 dg_l > is a 2 by 2 pivot
ii—1 i
block and the (i — 1)th row and column of A were interchanged with the /th row and column.
If uplo = Nag_Lower and ipiv[i — 1] = ipiv[i]] = —m < 0, (di dii > is a 2 by 2 pivot
divri dit1in
block and the (i + 1)th row and column of A were interchanged with the mth row and column.
6: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).
6 Error Indicators and Warnings
NE_INT

On entry, n = (value).
Constraint: n > 0.

NE_SINGULAR

The block diagonal matrix D is exactly singular.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

07pre.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07pre

7 Accuracy

If uplo = Nag_Upper, the computed factors U and D are the exact factors of a perturbed matrix A + F,
where

|E| < e(n)eP|U| | DI |U"|PT,

c(n) is a modest linear function of n, and e is the machine precision. 1f uplo = Nag Lower, a similar
statement holds for the computed factors L and D.

8 Further Comments

The elements of D overwrite the corresponding elements of A; if D has 2 by 2 blocks, only the upper or
lower triangle is stored, as specified by uplo.

The unit diagonal elements of U or L and the 2 by 2 unit diagonal blocks are not stored. The remaining
elements of U and L are stored in the corresponding columns of the array ap, but additional row
interchanges must be applied to recover U or L explicitly (this is seldom necessary). If ipiv[i — 1] = i, for
i=1,2,...,n (as is the case when A is positive-definite), then U or L are stored explicitly in packed form
(except for their unit diagonal elements which are equal to 1).

The total number of real floating-point operations is approximately %n3.

A call to this function may be followed by calls to the functions:
nag_zhptrs (f07psc) to solve AX = B;
nag_zhpcon (f07puc) to estimate the condition number of A;
nag_zhptri (f07pwc) to compute the inverse of A.

The real analogue of this function is nag_dsptrf (f07pdc).

9 Example

To compute the Bunch—Kaufman factorization of the matrix A, where

—1.36 4 0.00¢ 1.58 +0.90: 2.21 -0.21¢ 3.91 +1.50¢
1.58-090¢: —8.87+0.00¢ —1.84—-0.03z —1.78+41.18:
2214021 —1.84+0.03¢: —4.63 +0.00¢ 0.11 +0.11% |’
391 -150¢ —1.78—-1.18 0.11 —-0.11¢ —1.8440.00¢

A=

using packed storage.

9.1 Program Text

/* nag_zhptrf (f07prc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)

{
/* Scalars *x/
Integer ap_len, i, j, n;
Integer exit_status=0;
NagError fail;
Nag_UploType wuplo_enum;
Nag_OrderType order;

[NP3645/7] f07pre.3

f07prc

NAG C Library Manual

/* Arrays */
Integer *ipiv=0;

char

uplo([2];

Complex *ap=0;

#ifdef NAG_COLUMN_MAJOR

#define
#define
order
#else
#define
#define
order
#endif

A_UPPER(I,J) apl[Jd*x(J-1)/2 + I - 1]
A_LOWER(I,J) apl(2*n-J)*(J-1)/2 + I - 1]

= Nag_ColMajor;

A_LOWER(I,J) apl[I*(I-1)/2 + J - 1]
_UPPER(I,J) apl(2*n-I)*(I-1)/2 + J - 1]
= Nag_RowMajor;

INIT _FAIL(fail);
Vprintf ("f07prc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("sx["\n] ");
Vscanf ("$1d%*[*\n] ", &n);

ap_len

=n* (n+ 1)/2;

/* Allocate memory */

if (

{

! (ipiv = NAG_ALLOC(n, Integer))

I
(ap = NAG_ALLOC(ap_len, Complex)))

Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file *x/
Vscanf (" ' %1s ’'%*["\n] ", uplo);

if (*(unsigned char *)uplo == ’'L’)
uplo_enum = Nag_Lower;
else if (*(unsigned char #*)uplo == 'U’)
uplo_enum = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
}
if (uplo_enum == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (j = 1i; j <= n; ++3)
Vscanf (" (%1f , %1f)", &A_UPPER(i,j).re, &A_UPPER(i,])
b
Vscanf ("sx[*\n] ");
}
else
{
for (1 = 1; 1 <= n; ++1)
{
for (3 = 1; j <= i; ++3)
Vscanf (" (%1f , %1f)", &A_LOWER(i,j).re, &A_LOWER(i,j)
¥
Vscanf ("sx["\n] ");
}

/* Factorize A */
fO7prc(order, uplo_enum, n, ap, ipiv, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7prc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

fO07prc.4

.im) ;

.im) ;

[NP3645/7]

f07 — Linear Equations (LAPACK) f07pre

/* Print details of factorization =*/

x04ddc(order, uplo_enum, Nag NonUnitDiag, n, ap,
Nag_BracketForm, "%7.4f", "Factor", Nag IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04ddc.\n%s\n", fail.message);
exit_status = 1;
goto END;

3
/* Print pivot indices */
Vprintf ("\nIPIV\n") ;
for (i = 1; 1 <= n; ++1)
Vprintf ("$61d%s", ipiv[i-1], i%7==0 2"\n":" ");
Vprintf ("\n") ;

END:
if (ipiv) NAG_FREE (ipiv);
if (ap) NAG_FREE (ap);
return exit_status;

}

9.2 Program Data

fO07prc Example Program Data

4 :Value of N
'’ :Value of UPLO
(-1.36, 0.00) (1.58, 0.90) (2.21,-0.21) (3.91, 1.50)
(-8.87, 0.00) (-1.84,-0.03) (-1.78, 1.18)
(-4.63, 0.00) (0.11, 0.11)
(-1.84, 0.00) :End of matrix A
9.3 Program Results
fO7prc Example Program Results
Factor
1 2 3 4
1 (-1.3600, 0.0000) (3.9100, 1.5000) (0.3100,-0.0433) (-0.1518,-0.3743)
2 (-1.8400, 0.0000) (0.5637,-0.2850) (0.3397,-0.0303)
3 (-5.4176, 0.0000) (0.2997,-0.1578)
4 (-7.1028, 0.0000)
IPIV
-4 -4 3 4

[NP3645/7] fO07pre.5 (last)

	f07prc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	ap
	ipiv
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_SINGULAR
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

